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Abstract. For the three-dimensional gonihedric Ising models defined by Savvidy and Wegner
the bare string tension is zero and the energy of a spin interface depends only on the number
of bends and self-intersections, in antithesis to the standard nearest-neighbour three-dimensional
Ising action. When the parameterκ, weighting the self-intersections, is small the model has a
first-order transition and when it is larger the transition is continuous. In this paper we investigate
the scaling of the renormalized string tension, which is entirely generated by fluctuations, using
Monte Carlo simulations forκ = 0.0, 0.1, 0.5 and 1.0. The scaling of the string tension allows
us to obtain an estimate for the critical exponentsα andν using both finite-size scaling and data
collapse for the scaling function. The behaviour of the string tension when the self-avoidance
parameterκ is small also clearly demonstrates the first-order nature of the transition in this case,
in contrast to larger values. Direct estimates ofα are in good agreement with those obtained
from the scaling of the string tension. We have also measuredγ /ν.

1. Introduction

The phase structure of Ising models with extended-range interactions in two and three
dimensions is very rich in general [1, 2]. In three dimensions when the spin interfaces
are regarded as describing a gas of closed surfaces one gets a similarly rich diagram for
morphological transitions in an equivalent plaquette surface model [3]. The relation between
the weighting of area, right-angled bends and intersections in a plaquette surface model
and the couplings of an Ising model with nearest-neighbour, next-to-nearest-neighbour and
plaquette interactions on the dual lattice is explicitly known [1]. This equivalence between
an Ising model and a surface gas is particularly convenient for performing Monte Carlo
simulations, where the Ising model transcription offers obvious practical advantages.

In this paper we are interested in a class of Ising model Hamiltonians which assign
zero weight to the area of an interface. Any surface tension that appears in the model
is thus generated by fluctuations. Higher spin models with zero bare surface tension [4]
have been investigated in some detail, particularly in the context of wetting transitions [5],
but the gonihedric Ising model realization is still relatively unexplored. The genesis of the
gonihedric Ising models lies in a random surface model developed by Savvidyet al [6]
where the action for a triangulated two-dimensional (2D) surface embedded inRd is given
by

S = 1
2

∑
〈ij〉
|Xi −Xj |θ(αij ) (1)
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the sum being over the edges of some triangulated surface,θ(αij ) = |π − αij |ζ , ζ is some
exponent (smaller than 1, or else the model is ill-defined [7]), andαij is the dihedral angle
between adjacent triangles. This action was proposed to cure some of the diseases of
other triangulated random surface theories, which have proved remarkably reluctant to yield
smooth continuum limits.

Taking the discretization a stage further and discretizing the target space, which thus
becomesZd , the authors of [8–11] rewrote the resulting theory as precisely the sort of
extended Ising model considered in [1, 2]. Specializing to three dimensions, the energy of
a plaquette surface in the gonihedric model is given by byE = n2 + 4κn4, wheren2 is
the number of links where two plaquettes meet at a right angle andn4 is the number of
links where four plaquettes meet at right angles.κ is a free parameter which determines the
relative weight of the intersections compared with the right-angled bends. The results of
[1] show that an Ising Hamiltonian which givesE = n2+ 4κn4 contains nearest-neighbour
(〈i, j〉), next-to-nearest-neighbour (〈〈i, j〉〉) and round a plaquette ([i, j, k, l]) terms

H = 2κ
∑
〈ij〉

σiσj − κ
2

∑
〈〈i,j〉〉

σiσj + 1− κ
2

∑
[i,j,k,l]

σiσjσkσl. (2)

Of course it should be pointed out that the equivalence between equations (1) and (2) is
only at a very intuitive level. Ising surfaces have a degree of self-avoidance, which the
gonihedric action has not. The resolution of the resulting spin configurations in terms of
plaquette surfaces is also ambiguous (do the surfaces touch or cut each other?), but for large
enough (additional) self-avoidance couplingκ the distinction may be irrelevant. The ratio
of coefficients that appear in equation (2) is rather particular, it corresponds to the so-called
disorder variety as calculated in the mean-field approximation [12].

The above Hamiltonian displays a ‘flip’ symmetry—a plane of spins may be flipped
with no energy cost if it does not intersect any other planes. This symmetry poses some
problems in Monte Carlo simulations when one is attempting to measure, for example
magnetic exponents as lamellar low-temperature configurations with arbitrary interlayer
spacing render the standard magnetization

M =
〈

1

L3

∑
i

σi

〉
(3)

meaningless†. The solution adopted in [13, 14] was to fix three perpendicular planes of
spins, which provided a sufficient penalty to suppress the lamellar state degeneracy and still
allowed one to retain the periodic boundary conditions which minimize finite-size effects.

The phase structure of the Hamiltonian in equation (2) has been explored by both Monte
Carlo [13, 14] and cluster-variational (CVPAM) methods [15, 16] with similar results:
there is a single transition from a paramagnetic high-temperature phase to (with appropriate
boundary conditions in the Monte Carlo case) a ferromagnetic phase. The transition point
appears to be independent ofκ for κ sufficiently large. The transition is continuous for these
values ofκ. The critical indices are also independent ofκ. However, in the vicinity of
κ = 0, where the model displays an additional ‘antiferromagnetic’ symmetry, the transition
becomes first order [14]. A modified mean-field approach [13, 1] also predicts the same
phase structure, but underestimatesβc and gives a much stronger variation ofβc with
κ than is seen in the simulations and CVPAM approach. In [16] it was suggested that
consideration of a larger space of coupling constants for the terms in equation (2) indicated

† Although a low-temperature expansion suggests that the lamellar state actually has a slightly higher energy than
the purely ferromagnetic state [15], Monte Carlo simulations with periodic boundary conditions persistently give
lamellar configurations.
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that the observed exponents were effective exponents arising from the proximity of the
transition point to the critical endpoint of a paramagnetic–ferromagnetic line.

It was remarked by Savvidyet al [9] that βc was close to that of the standard 2D Ising
model with nearest-neighbour interactions on a square lattice and the simulations in [13]
found γ /ν = 1.79(4), close to the Onsager 2D Ising value of 1.75. These authors also
found ν = 0.8(1)†, not far off the 2D Ising valueν = 1. However, the value ofβ was
estimated to be a lot smaller than the Onsager value of 0.125.

Direct and finite-size scaling fits on the specific heat data in [13] forα were not very
reliable due to the presence of the unknown analytic part in the specific heat, which leads
to an extra adjustable parameter in the fits. Part of the motivation for the current work was
to obtain an alternative estimator forα that sidestepped these problems. Another factor was
the apparent impossibility of finding discretized surface models exhibiting a proper scaling
of the string tension. The ordinary three-dimensional (3D) Ising model has a scaling string
tension, but it is unclear to which continuum surface model it corresponds. It is thus
interesting to find equally simple models with different scaling properties, particularly if, as
for the one presented here, they have a good geometrical interpretation. An additional reason
to undertake this project was that, if present, the string tension in the gonihedric models
should be entirely generated by fluctuations, so the simulations allow one to confirm that the
standard scaling ansatz still apply in such a case. Finally, the behaviour of the string tension
is an excellent indicator of a first-order transition, so a simulation at, or around,κ = 0 can
confirm the first-order nature of the transition in this case. In [14] we hypothesized that
the apparent impossibility of defining a continuum limit for ‘ghost’ surfaces (κ = 0 implies
no self-avoidance) may be related to the fact that equation (1) leads to problems ifζ = 1,
which the Ising discretization naively corresponds to.

We now move on to discuss the measurement of the surface tension and extraction of
estimates forα andν.

2. String tension

Normally when one is trying to measure a string tension in an Ising-like model it is sufficient
to use antiperiodic boundary conditions in one direction because this guarantees the presence
of an interface. The string tension can then be defined from the ratio of the bulk partition
functionZ0 and the partition function with an interfaceZI as

σ = 1

L2
log

(
Z0

ZI

)
(4)

where we have assumed that we have a square interface spanning anL × L boundary.
However, as we have seen, the gonihedric Ising models possess a symmetry which allows
planes of spins to be flipped at no energy cost, so antiperiodic boundary conditions are
insufficient to force an interface. Something more coercive, in the form of the fixed,
or perhaps more accurately ‘mixed’, plus and minus spin boundary conditions shown in
figure 1(a) is necessary in order to make sure an interface exists. The fixed spins on the
faces make sure that any flipped spin planes will be penalized by a boundary energy and thus
discouraged. While this has the disadvantage of greater finite-size effects than antiperiodic
boundaries one can also use fixed-boundary conditions in calculating the ‘bulk’ contribution
Z0, but now with all spins plus in order to eliminate the interface as shown in figure 1(b).
Since the string tension is defined from a ratio of partition functions (i.e. a difference of

† ν is inadvertently transposed with 1/ν in [13].
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(a)

(b) Figure 1. The boundary conditions used in measuring the string tension,
(a) is used to produce an interface, (b) is used to ensure a ferromagnetic
phase. On the shaded surfaces the spins are fixed to plus and on the white
surfaces to minus.

free energies), there should be a degree of cancellation in the finite-size effects forZ0 and
ZI .

In practice one cannot measure a partition function or free energy directly in the
simulations, so one considers the derivative of the string tension with respect toβ, which
gives the (internal) energy difference between configurations with and without an interface

∂σ

∂β
= 1E = Lz(〈E++〉 − 〈E+−〉) (5)

where we have denoted the mixed boundary conditions that give the interface by{+−} and
the fixed boundary conditions by{++} and the〈E〉’s are energy densities. The volume of
the system isLz × L × L. If Lz = L, the standard finite-size scaling behaviour for the
specific heatC ∼ C̃0+ C̃1L

α/ν and the relationC = ∂E/∂β mean that one would expect

E ' E0+ E1L
α−1
ν (6)

where the constantE0 has its origin in the regular term in the specific heat and would be
expected to appear for both sets of boundary conditions. A measurement of the energy with
a single set of boundary conditions thus gains nothing over specific heat measurements as
there is still a constant termE0. However, if one considers both mixed and fixed boundary
conditions one would expect thesameregular partE0 for both sets. A measurement of the
energy difference therefore eliminatesE0 and a simple power law fit to

1E = L(〈E++〉 − 〈E+−〉) ∝ L1+ α−1
ν = LA (7)

determines the exponentA. Similar methods have been used to extractα for the Heisenberg
model by Holm and Janke [17].

In order to extract further estimates from our simulations we also considered the standard
scaling ansatz [18] for the string tension on an asymmetric lattice. Then

σ ∼ 1

L2
6

(
tL1/ν,

Lz

L

)
(8)

wheret = |β − βc|/βc. This gives directly

1E ∼ L−2+1/ν6′
(
tL1/ν,

Lz

L

)
(9)

so at the critical point

1E ∼ L−2+1/ν6̃′
(
Lz

L

)
. (10)
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Table 1. 1E/L for κ = 1.0, along with the estimated pseudocritical temperatures.

L 12 15 18 20 22 25

1E/L 0.0369(28) 0.0307(20) 0.0281(23) 0.0235(25) 0.0244(21) 0.0222(25)
βc(L) 0.3938(4) 0.4095(1) 0.4124(1) 0.4198(1) 0.4204(1) 0.4227(1)

For κ = 0.5 we simulated lattices with various aspect ratios,x = Lz/L, and adjusted the
exponentA in a plot of1E L−A in order to attempt to obtain a smooth scaling function
6̃′(x). The ‘best’ curve then gives an estimate ofA = −2+ 1/ν†. The approach can
also be used on symmetric lattices away from the critical point as, referring to equation (9)
whenLz = L, we can see that1EL2−1/ν plotted againsttL1/ν should collapse the data
for various lattice sizes and temperatures to give a smooth scaling function for the correct
choice ofν.

3. Simulations

3.1. Energy and specific-heat exponents

The simulations were carried out on symmetric lattices of size 103, 123, 153, 183 ,203, 223

and 253 for κ = 1.0. For κ = 0.5 lattices with various aspect ratios of sizes 102 × 10,
122 × 10, 142 × 10, . . . 202 × 10, 162 × 20, 202 × 20, 242 × 20, and 162 × 30, 202 × 30,
242 × 30, 302 × 30 were used. Similar sizes were considered forκ = 0 and κ = 0.1.
We carried out 50–1000 K measurement sweeps after allowing a suitable amount of time
for thermalization, depending on the value ofβ and the lattice sizes. We used the tried
and tested code from [13, 14], which performs a simple metropolis update. It is worth
remarking that although the gonihedric action contains competing interactions it might be
worthwhile formulating a cluster update for the model as there is no frustration present. The
magnetization, energy, susceptibility, specific heat and various cumulants were all measured
in the standard fashion. For each lattice size we simulated separately with fixed and mixed
boundary conditions in order to allow us to measure1E from the combined results.

Taking, for example, theκ = 1.0 results on symmetric lattices, we find that the curve
of 1E displays a maximum, which we use as our estimator for the pseudocritical point‡.
The values of1E/L at the appropriate pseudocritical points are shown in table 1.

A fit to these values gives1E ∼ LA ∼ L0.3(1) with a χ2/degrees of freedom of 0.3.
This estimate gives a much lower value forν (ν = 0.44(2)) than that in [13] which was
obtained by comparison ofγ /ν with γ (as well as the scaling of the pseudocritical points).
A plot of the scaling function for the energy in figure 2 forν = 0.44 gives quite a good
collapse of the data, providing further evidence in support of this lower value.

We have only three symmetric lattice simulations to carry out a simple finite-size scaling
fit for κ = 0.5, which give 0.4(1) for the exponent in the fit to1E versusL. We do have, on
the other hand, a wide range of asymmetric lattice sizes on which we try out the asymmetric
scaling programme outlined in section 2. In figure 3 we show a plot of1EL−A = 6̃′(Lz/L)
againstLz/L. By inspection the smoothest data corresponds toA ∼ 0.46(4) which is
consistent with the finite-size scaling estimate of 0.4(1) for A above. Other values ofA are
also plotted to show how the scaling curve quickly deteriorates once one moves outside the

† By hyperscaling inD = 3,−2+1/ν = 1+ (α−1)/ν, so the two definitions ofA we have given are equivalent.
‡ This proved more stable than using the maximum slope—i.e. maximum of the specific heat, and would in any
case be expected to have the same scaling properties.
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Figure 2. The scaling function on symmetric lattices atκ = 1, showing the good data collapse
whenν = 0.44. Some of the intermediate lattice sizes have been dropped for clarity.

Figure 3. The asymmetric lattice scaling function forκ = 0.5 is plotted for various choices of
the exponentA defined in the text.
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acceptable region for the exponent. The estimated value ofA for κ = 0.5 is thus somewhat
higher than the value 0.3(1) obtained whenκ = 1.0, but given the errors it is not possible
to discern whether the exponents are different. We believe, in fact, that they are the same.
In any case, the values we obtain forA are clearly different from the 2D and 3D Ising
model values (A = 0 andA ' −0.4, respectively).

It is possible to confirm that direct fits to the specific heat exponent are in agreement with
the above method. Given that fits toC ∼ C0 + C1t

−α andC ∼ C̃0 + C̃1L
α/ν are rendered

untrustworthy by the presence of the analytical terms another possible approach is simply
to plotC−1/α versusβ for various choices ofα. ProvidedC0 is not too large this would be
expected to collapse all the various lattice-size data onto a straight line. This approach turns
out to work remarkably well for bothκ = 0.5 andκ = 1.0. In figure 4 we plot the results
of the best data collapse forκ = 0.5 with α = 0.7. Via hyperscaling, this is consistent with
the estimates ofν appearing from the string tension scaling measurements. The results for
κ = 1.0 are shown in figure 5. The best fit is again obtained forα = 0.7 and the error bars
can be estimated in both cases by looking at how the straight line plot deteriorates as the
exponent is varied. As we have noted, standard fitting techniques forα are not particularly
convincing with our data, but a fit to all theβ < βc data forC ∼ C0 + C1t

−α using our
best estimate ofβc givesα = 0.5(1), admittedly with poor quality, for bothκ = 0.5 and
1.0. In addition, the estimated value ofC0, while not zero, is certainly small and provides
justification for the plots in figures 4 and 5. In summary, we would estimate our best fit
to beα = 0.7(1), which supports the result obtained from the scaling of the string tension
(ν ∼ 0.44 translates toα ∼ 0.7 with hyperscaling).

It is also worth looking at theκ = 0.0 andκ = 0.1 results for1E in order to see
the signals of a first-order transition in the scaling of the string tension. For a first-order
transition one has a finite string tension at the transition point and throughout the ordered
phase. A step function in the string tensionσ translates into a delta function (centred at
βc) in the measured quantity1E. This is precisely what is observed in the simulations
both atκ = 0 itself and at small values ofκ such as 0.1 as can be seen very clearly in
figure 6. Even atκ = 0.1 the sharpness of the observed peak indicates that the transition is
still strongly first order.

3.2. Magnetic exponents

The speculations in [13] regarding the similarity with the 2D Ising model were largely
based on exponents coming from the susceptibilityχ ∼ Lγ/ν and χ ∼ t−γ , although it
was noted that the estimate for magnetic exponent itselfM ∼ Lβ/ν , was much smaller than
the Onsager 2D Ising value. It is possible to play a similar data collapse game with the
susceptibility measurements to that performed with the specific heat in the previous section
in order to extract an estimate forγ—one simply plotsχ−1/γ againstβ for variousγ until
the best straight line plot is obtained. In principle this should work even better than for the
specific heat because of the absence of an analytic term in the scaling expression for the
susceptibility, but the fixed and mixed boundary conditions that are imposed in the interest
of obtaining an interface appear to do rather greater violence to the magnetic quantities than
to the energetic ones, so the finite-size effects are large. The fixed boundary conditions
give marginally better scaling behaviour than the mixed boundary conditions, so in what
follows we use these. However, even in this case as a consequence of the large finite-size
effects it is difficult to arrive at a precise direct determination ofγ . All we can say is
that it is in the region comprised betweenγ = 1 andγ = 2, which, admittedly, is not
saying much. It is interesting that the CVPAM estimate forγ (1.4) which is unaffected
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Figure 4. C−1/α versusβ for the best choice ofα = 0.7 at κ = 0.5.

Figure 5. C−1/α versusβ for the best choice ofα = 0.7 at κ = 1.0.
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Figure 6. 1E for κ = 0.1 on various asymmetricL2 × 10 lattices. The sharp peak is a clear
indication of first-order behaviour.

Table 2. Data used in fittingγ /ν for κ = 1.0.

L 12 15 18 20 22 25

χmax 9.4(3) 14.9(6) 22.7(1.8) 28.8(2.2) 32.9(2.0) 43.0(3.7)
βc(L) 0.3784(3) 0.3919(4) 0.3975(2) 0.4027(3) 0.4148(1) 0.4144(1)

by boundary condition and finite-size considerations is also relatively small, although the
systematic errors are difficult to assess in this case.

Nonetheless, finite-size scaling allows a much better measurement ofγ /ν for both
κ = 0.5 and κ = 1.0. In both cases one obtainsγ /ν = 2.1(1). The data used in the
κ = 1.0 fit on symmetric lattices is shown in table 2, which produced a fit of 2.1(1) with a
χ2/degrees of freedom of 0.18.

For κ = 0.5 on asymmetric lattices we perform a finite-size scaling analysis similar
to the one employed in determining the string tension scaling. We search for a universal
scaling functionX(Lz/L) by adjusting the value ofγ /ν in a plot ofX(Lz/L) ∼ χL−γ /ν .
The smoothest function is also obtained whenγ /ν = 2.05, in excellent agreement with the
κ = 1 result. The functionX is plotted in figure 7. To show the sensitivity of the method,
we also plotX for γ /ν = 1.80 which gives a markedly less smooth curve.

A final word of warning: while the estimates obtained are rather higher than the 1.79(4)
in [13] for γ /ν atκ = 1.0 it should be remembered that a different set of boundary conditions
(periodic, with fixedinternal spin planes) was used there, and that these might be expected
to cause less severe finite-size effects for magnetic quantities. The fixed boundary conditions
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Figure 7. X(Lz/L) for γ /ν = 1.8, 2.05 atκ = 0.5.

are even more violent to the magnetization itself and we could obtain no reliable estimates
for either the magnetization exponentβ or β/ν from finite-size scaling, in contrast to the
periodic boundaries and fixed internal spin planes in [13].

4. Discussion

As we have already noted, from the results it is clear that the 2D and 3D Ising values forA of
0 and∼ −0.4 are definitively excluded. This shows that the hypothesis floated in [13] which
states that the critical behaviour of the model might be related to that of the standard 2D Ising
model is not supported by the numerical evidence. There is good agreement between the
various methods we have used to extract the energetic exponents (α, ν). The data collapse
on both symmetric and asymmetric lattices suggests thatα = 0.7(1) for both κ = 0.5 and
1.0 and (via both hyperscaling and directly from the data collapse)ν is in the region of
0.5. We find a value around 2 forγ /ν from the finite-size scaling of the susceptibility,
which implies a smaller value ofγ (∼ 1) than that estimated in [13]. As we have noted,
the estimate forγ from the CVPAM calculations [16] is similarly small. It is also worth
remarking that the estimateγ /ν ∼ 2 implies (from the Fisher scaling relationγ = ν(2−η))
that the estimated value ofη is small, another indication that the critical behaviour isnot
related to the 2D Ising model. The set of exponents that we have arrived at are consistent
with α+2β+γ = 2. In addition hyperscaling,α = 2− νD, appears to be happily satisfied
by the measured values ofα and ν. The first-order nature of the transition for smallκ is
also manifest in the sharp spike in the measurements of1E at βc for κ = 0.0, 0.1.

It is interesting that a similar value ofα = 0.5 appears in the vicinity of the disorder
variety for the anisotropic triangular lattice Ising model [19, 20]. The Blöte and Hilhorst



String tension in gonihedric three-dimensional Ising models 7705

transcription of the anisotropic triangular lattice Ising model as a diamond covering of the
lattice is particularly intriguing from our viewpoint. In this formulation the model can be
viewed as a perspective view from the(1, 1, 1) direction of a cubic lattice SOS model. The
excitations in the model appear as steps, or strings of flipped diamonds in the perspective
view of an otherwise flat surface. It is noteworthy that the weights which appear in their
model are identical to weights for a restricted class of surface configurations in the gonihedric
Ising model, namely: steps of height 1; no right-angled bends; no overhangs; and12 (one
of their parameters) zero. Similarα = 0.5 singularities appear in related dimer problems
[21] which can be formulated as hexagonal lattice vertex models. Indeed, it is possible to
write down a vertex model that represents the full gonihedric set of surface configurations
as viewed from a(1, 1, 1) perspective but this does not appear to be soluble.

Haldane and Villain [22] pointed out that a square-root singularity would be expected
to appear generically in systems with string-like, or striped, excitations in two dimensions.
Given the values ofα that we have estimated from the string tension scaling here, it is not
inconceivable that we have a 3D realization of these ideas in the gonihedric Ising model.

Acknowledgments

RPKCM was supported by Commonwealth Scholarship SR0014. DE and DAJ were partially
supported by EC HCM network grant ERB-CHRX-CT930343. DE acknowledges the
financial support of CICYT and CIRIT through grants AEN95-0590 and GRQ93-1047,
respectively. MB acknowledges the financial support of CESCA and the financial support of
CICYT through grant AEN95-0882. DAJ would like to thank Wolfhard Janke for clarifying
discussions on the scaling form of1E. DE would like to thank the hospitality of the CERN
TH Division where this work was finished.

References

[1] Cappi A, Colangelo P, Gonella G and Maritan A 1992Nucl. Phys.B 370 659
[2] Selke W 1988Phys. Rep.170 213

Landau D P and Binder K 1985Phys. Rev.B 31 5946
[3] Sterling T and Greensite J 1983Phys. Lett.121B 345

Karowski M and Thun H 1985Phys. Rev. Lett.54 2556
Karowski M 1986J. Phys. A: Math. Gen.19 3375

[4] Schmid F and Schick M 1994Phys. Rev.E 49 494
[5] Dietrich S 1989Phase Transitions and Critical Phenomenavol 13, ed C Domb and J L Lebowitz (London:

Academic)
[6] Ambartzumian R V, Sukiasian G S, Savvidy G K and Savvidy K G 1992Phys. Lett.B 275 99

Savvidy G K and Savvidy K G 1993 Int. J. Mod. Phys.A 8 3393
Savvidy G K and Savvidy K G 1993Mod. Phys. Lett.A 8 2963

[7] Durhuus B and Jonsson T 1992Phys. Lett.B 297 271
[8] Savvidy G K and Wegner F J 1994Nucl. Phys.B 413 605

Savvidy G K and Savvidy K G 1994Phys. Lett.B 324 72
Savvidy G K, Savvidy K G and Savvidy P G 1996Phys. Lett.A 221 233
Savvidy G K and Savvidy K G 1994Phys. Lett.B 337 333
Savvidy G K, Savvidy K G and Wegner F J 1995Nucl. Phys.B 443 565

[9] Bathas G K, Floratos K G, Savvidy G K and Savvidy K G 1995Mod. Phys. Lett.A 10 2695
[10] Savvidy G K and Savvidy K G 1996Mod. Phys. Lett.A 11 1379
[11] Pietig R and Wegner F 1996Nucl. Phys.B 466 513
[12] Gonella G, Lise S and Maritan A 1995Europhys. Lett.32 735
[13] Johnston D A and Malmini R K P C 1996Phys. Lett.B 378 87
[14] Baig M, Espriu D, Johnston D A and Malmini R K P C 1997J. Phys. A: Math. Gen.30 405
[15] Cirillo E, Gonnella G, Pelizzola A and Johnston D 1997Phys. Lett.A 226 59



7706 M Baig et al

[16] Cirillo E, Gonnella G and Pelizzola A 1997 New critical behaviour of the three dimensional Ising model
with nearest neighbour, next nearest neighbour and plaquette interactionsPhys. Rev.E to appear

[17] Holm C and Janke W 1994J. Phys. A: Math. Gen.27 2553
[18] Privman V 1990Finite Size Scaling and Numerical Simulation of Statistical Systems(Singapore: World

Scientific)
[19] Blöte H and Hilhorst H 1982J. Phys. A: Math. Gen.15 L631
[20] Georges A, Hansel D, Le Doussal P and Maillard J 1986J. Phys. A: Math. Gen.19 L329
[21] Wu F 1968Phys. Rev.168 539
[22] Haldane F and Villain J 1981J. Physique42 1673


